Learning to rank

Results: 420



#Item
291Learning to rank / Web query classification / Web search query / Okapi BM25 / Discounted cumulative gain / Relevance / Google Search / Search engine indexing / Document retrieval / Information science / Information retrieval / Ranking function

How Fresh Do You Want Your Search Results? Shiwen Cheng, Anastasios Arvanitis, Vagelis Hristidis Department of Computer Science & Engineering University of California, Riverside, California, USA {schen064, tasos, vageli

Add to Reading List

Source URL: www.cs.ucr.edu

Language: English - Date: 2013-07-30 00:18:35
292Social information processing / Information retrieval / Collaboration / Recommender system / Machine learning / Web 2.0 / Collaborative filtering / Social networking service / Cold start / Information science / Statistics / Collective intelligence

Learning to Rank Social Update Streams ∗ Liangjie Hong † , Ron Bekkerman§ , Joseph Adler§ , Brian Davison† † Dept. of Computer Science and Engineering, Lehigh University, Bethlehem, PA, USA § LinkedIn Corp., M

Add to Reading List

Source URL: www.hongliangjie.com

Language: English - Date: 2012-06-06 15:54:53
293Natural language processing / Computational linguistics / Freebase / Internet search engines / Learning to rank / Google Search / N-gram / Relevance / Indri people / Information science / Science / Information retrieval

ICTNET at Session Track TREC 2013 , , ,

Add to Reading List

Source URL: trec.nist.gov

Language: English - Date: 2014-02-28 12:39:26
294Information / Learning to rank / Relevance / Precision and recall / Crowdsourcing / Quicksort / Relevance feedback / Text Retrieval Conference / Information science / Information retrieval / Science

Northeastern University Runs at the TREC13 Crowdsourcing Track Maryam Bashir, Jesse Anderton, Virgil Pavlu, Javed A. Aslam College of Computer and Information Science Northeastern University, Boston, USA {maryam,jesse,vi

Add to Reading List

Source URL: trec.nist.gov

Language: English - Date: 2014-02-28 12:39:27
295Learning to rank / Query expansion / Search engine indexing / Search engine / Web search engine / Google Search / Bing / Precision and recall / IR evaluation / Information science / Information retrieval / Text Retrieval Conference

Overview of the TREC 2013 Federated Web Search Track Thomas Demeester1 , Dolf Trieschnigg2 , Dong Nguyen2 , Djoerd Hiemstra2 1 2

Add to Reading List

Source URL: trec.nist.gov

Language: English - Date: 2014-02-28 12:39:25
296Information retrieval / Computational linguistics / Machine learning / Text Retrieval Conference / Search engine indexing / Information extraction / Learning to rank / Information science / Science / Natural language processing

BIT and MSRA at TREC KBA CCR Track 2013 ∗ Jingang Wang

Add to Reading List

Source URL: trec.nist.gov

Language: English - Date: 2014-02-28 12:39:25
297Science / Review websites / Machine learning / User interface techniques / Recommender system / Yelp /  Inc. / Social networking service / Learning to rank / Bing / Information science / Information retrieval / Information

PITT at TREC 2013 Contextual Suggestion Track Ming Jiang, Daqing He School of Information Sciences University of Pittsburgh {mij32, dah44}@pitt.edu

Add to Reading List

Source URL: trec.nist.gov

Language: English - Date: 2014-02-28 12:39:27
298Google Search / Federated search / Web search engine / Video search engine / Okapi BM25 / Learning to rank / Information science / Information retrieval / Search engine

ICTNET at Federated Web Search Track 2013 Feng Guan1,2,Yuanhai Xue1,2, Xiaoming Yu1, Yue Liu1, Xueqi Cheng1 1. Institute of Computing Technology, Chinese Academy of Sciences, Beijing, [removed]University of Chinese Acad

Add to Reading List

Source URL: trec.nist.gov

Language: English - Date: 2014-02-28 12:39:26
299Vector space model / Learning to rank / Tf*idf / Relevance / Query expansion / Twitter / Language model / Ranking function / Search engine indexing / Information science / Information retrieval / Okapi BM25

PKUICST at TREC 2013 Microblog Track ∗ Runwei Qiang Yue Fei Yihong Hong Jianwu Yang {qiangrw, feiyue, hongyihong, yangjw}@pku.edu.cn Institute of Computer Science and Technology

Add to Reading List

Source URL: trec.nist.gov

Language: English - Date: 2014-02-28 12:39:27
300Learning to rank / Relevance feedback / Relevance / Information retrieval / Science / Information

University of Glasgow at TREC 2013: Experiments with Terrier in Contextual Suggestion, Temporal Summarisation and Web Tracks ∗ B. Taner Dinçer

Add to Reading List

Source URL: trec.nist.gov

Language: English - Date: 2014-02-28 12:39:27
UPDATE